
 Unix Crash Course Slide 1

Unix Crash Course

 Unix Crash Course Slide 2

$ who am i

● Rob Wolfram
● Unix System administrator
● E-mail: r.s.wolfram@amsterdamumc.nl

● PGP Key: 0xF7A0F7A0

 Unix Crash Course Slide 3

Subjects (before lunch)

● A short history of Unix and Linux
● Structure and philosophy of Unix
● Files and filesystems
● Shell variables and globbing
● Processes and jobs

 Unix Crash Course Slide 4

Subjects (after lunch)

● Networking and the X windowing system
● Shell scripting concepts
● Regular expressions
● sed and awk
● Miscelanious (editing and programming)

 Unix Crash Course Slide 5

Mumbo Jumbo?

 Unix Crash Course Slide 6

Unix History

● AT&T abandoned MULTICS
● Ken Thompson & Dennis Ritchie developed

UNICS on a PDP7
● UNIX ported to Ritchie's C language
● BSD released, many ports followed
● POSIX effort to unify Unices
● GNU project / Linux kernel

 Unix Crash Course Slide 7

Unix History

Ritchie and Thompson working on a PDP11/20 at Bell Labs

 Unix Crash Course Slide 8

Unix History

 Unix Crash Course Slide 9

(Gnu/) Linux distros

 Unix Crash Course Slide 10

Unix philosophy

● Everything is a file

● Combine small tools to build your
requirement

 Unix Crash Course Slide 11

Unix structure

Unix has an onion-like structure, the hardware is
handled by the kernel

 Unix Crash Course Slide 12

Kernel provisions

The kernel provides:
● CPU scheduling of processes
● Accessing hardware
● System calls for user-land programs
● The filesystem
● Privilege separation etc.

 Unix Crash Course Slide 13

Multi-user environment

● Unix runs programs from multiple users
concurrently, even interactive programs

● User identified by numeric id, user name
provided for verbosity

● User is member of one or more groups,
identified by group id

● Interactive sessions need a TTY for input and
output

 Unix Crash Course Slide 14

The filesystem

 A single unified tree of multiple filesystems

 Unix Crash Course Slide 15

Inodes

 Unix Crash Course Slide 16

File permissions

 Unix Crash Course Slide 17

Lab 1

● (page 10, execute setup_labs.sh)
● ls -l
● cat README
● chmod a+r README
● ls -l
● cat README

 Unix Crash Course Slide 18

The Shell

● There are various shells available:
– sh: the Bourne shell

– csh: the C shell

– ksh: the Korn shell

– tcsh: the TENEX C shell

– bash: the Bourne-Again shell

– zsh: the Z shell

 Unix Crash Course Slide 19

The Shell

● The shell interprets entered commands
Syntax: command argument_list

● Arguments are separated by white space
Certain arguments (usually single characters
preceded by a dash change the program's
behaviour and are called “options”

● The shell will perform command substitution,
variable expansion and globbing and execute
the command with modified command line. All
these steps depend on quoting.

 Unix Crash Course Slide 20

Frequent commands

man chmod wc
echo chown more
read chgrp date
ls umask time
cp cat tar
mv head gzip
ln tail compress
rm cut xargs
pwd grep tee
cd sed expr
mkdir sort awk
rmdir uniq find

 Unix Crash Course Slide 21

Shell variables

Using shell variables:
$ echo $HW
$ HW="Hello, World."
$ echo $HW
Hello, World.
$

Export variables to make them visible in a sub-
shell:
$ export VARIABLE

Use curly braces to disambiguate variables:
$ echo ${VARIABLE}more_text

 Unix Crash Course Slide 22

Special variables

$PATH $0
$MANPATH $1 - $9
$LD_LIBRARY_PATH $#
$HOME $*
$USER $@
$PWD $?
$SHELL $$
$PS1 $!
$PS2

 Unix Crash Course Slide 23

Quoting

Variables expand in double quotes, not in single
quotes. Backslashes “escape” a single
character:
$ HW="Hello, World."
$ echo "$HW"
Hello, World.
$ echo '$HW'
$HW
$ echo \$HW
$HW
$ echo \\$HW
\Hello, World.
$

 Unix Crash Course Slide 24

Command substitution

Use “backquotes” for command substitution:
$ wc log.`date +%Y%m%d`
 1 8 54 log.20131102
$

On modern shells, $() is allowed. This enables
nesting:
bash$ wc log.$(expr $(date +%Y%m%d) – 100)
 630 1616 40744 log.20131002
bash$

 Unix Crash Course Slide 25

Globbing

● The asterisk (*) expands to zero or more
characters (e.g. “ls foo*”)

● The question mark expands to exactly one
character (e.g. “ls /etc/?asswd”)

● Characters in square brackets expand to one
character from the list. Ranges are allowed.
(“ls foo.[abc0-9]”). Negate the list with an
exclamation mark (“ls foo.[!abc0-9]”).

 Unix Crash Course Slide 26

Globbing

● On modern shells, the tilde (~) expands to the
users homedirectory and “~foo” to the
homedirectory of user “foo”

● Globbing is handled by the shell, the executed
command doesn't know if globbing occurred
– Notice that this can cause an error of an oversized

argument list

 Unix Crash Course Slide 27

Lab 2

(page 16 – 17)

● File & directory management
● Variable substitution
● Command substitution
● Globbing

 Unix Crash Course Slide 28

Redirection

● Three file descriptors:
– FD0 is standard input (stdin)
– FD1 is standard output (stdout)
– FD2 is standard error (stderr)

● More are available for advanced use
● Redirect output with > and input with < (e.g.

“command 1> file” or “command 0< file” (FD is
optional for stdin and stdout)

 Unix Crash Course Slide 29

Redirection

● Connect file descriptors with >& construct:
(command > file 2> &1)

● > overwrites the output file or create a new one,
>> will append to the file instead

● << is called a “here document” and used in
scripts.

 Unix Crash Course Slide 30

Pipes

● A pipe connects stdout of a command to stdin
of the next
This is central to the Unix philosophy, i.e.
create small but powerful tools and connect
them
Example:
ls /tmp | wc -l

● stderr can't be piped alone, only with stdout

 Unix Crash Course Slide 31

tee and xargs

● Two commands used a lot with pipes:
tee and xargs. Examples:

● Save log output and count entries:
grep 10.1.2.3 /var/log/apache/access.log \
| tee /tmp/rogueclient.txt | wc -l

● Search for text in files that are less than 4 days
old:
find /var/log -mtime -4 -print | xargs \
grep -l 'kernel error'

 Unix Crash Course Slide 32

Grouping

Combine stdout of multiple commands with () or
{}. Parentheses work in sub-shell, braces in
current shell:

$ echo Foo ; echo Bar | wc
Foo
 1 1 4
$ { echo Foo ; echo Bar ;} | wc
 2 2 8
$ (echo Foo ; echo Bar) | wc
 2 2 8
$

 Unix Crash Course Slide 33

Lab 3

(page 19)

● Redirection and piping

 Unix Crash Course Slide 34

Forking

● The shell will start a “child process”. The
command will be executed in this process.

● After the child exits, it signals the “parent”.
● Changed environment in child is not visible in

the parent (variables, current directory)
● Parent variables should be “exported” to be

visible in the child (export VARNAME)
● Executing a shell in current process is called

“sourcing” (. scriptfile)

 Unix Crash Course Slide 35

Processes

● Every process has a “process id”
● Use ps to retrieve information of processes
● Use kill to send processes a signal

Some signals (e.g. SIGINT) are handled by the
program, others (e.g. SIGKILL) are handled by
the kernel

 Unix Crash Course Slide 36

Jobs

● A process can be started in the background by
appending an ampersand (&) to the CL

● A program is suspended by sending it a
SIGSTOP (e.g. by pressing CTRL-Z)

● jobs gives a list of all suspended and
backgrounded processes

● fg and bg continue running a process in the
foreground or background respectively (job id
may be appended with % sign

 Unix Crash Course Slide 37

Scheduling

● Run a program unattended later with at:
echo "find /tmp -mtime +30 | xargs rm -f"\
| at 20:08 tomorrow

● Schedule regularly with cron. Syntax:
min hou dom mon dow command [arguments]

Example:
5 * * 3,6 2 echo foo >> /tmp/myfile

 Unix Crash Course Slide 38

Shell Initialization

● The shell will source files on login or other
startup.
– sh, ksh: /etc/profile, $HOME/.profile (on

login)
– bash: /etc/profile, $HOME/.bash_profile,
$HOME/.profile (on login)
/etc/bash.bashrc, $HOME/.bashrc (interactive)

 Unix Crash Course Slide 39

Lunch

See you in an hour

 Unix Crash Course Slide 40

Networking
● Interactive shells and file sharing can be

started from networked hosts
● Common tools:

– telnet

– ftp

– “rsh” tools (rsh, rlogin, rcp)

– secure shell suite (ssh, scp, sftp)

● Pseudo-TTY's are assigned to interactive
networked shells

 Unix Crash Course Slide 41

The X Windowing System

● The standard Unix GUI (X) is networked based.
Consists of an “X server” (which can display
graphics and handle keyboard and mouse) and
an “X client” (a program requesting graphical
output.

● The X server is identified by the $DISPLAY
variable (e.g. myscreen.example.com:0.0)

 Unix Crash Course Slide 42

The X Windowing System

 Unix Crash Course Slide 43

X server access

● Host based access: (dis)allow all users access
to the X server. Syntax: xhost +|- [hostname]

● Cookie based access. List cookie on X server
and add it to the .Xauthority file from the user
running the X client. xauth is used for cookie
management

● ssh can automate the xauth process and pass
X traffic via encrypted tunnel.

 Unix Crash Course Slide 44

Shell scripting

● A “shebang” is needed to tell the OS what
script language is used. Syntax:
#!/bin/sh

● Functions are “named groupings” and are not
executed at time of declaration. Syntax:
shfunc() { commandlist ; }

● Here document redirects stdin from the script:
command << WORD

first line of stdin
last line of stdin
WORD

 Unix Crash Course Slide 45

Shell flow: if

● Syntax:
if command
then

command list
elif command
then

command list
else

command list
fi

● Alternative:
command1 && command2 || command3

 Unix Crash Course Slide 46

Shell flow: case

● Syntax:
case string in

valuelist1)
command list

;;
valuelist2)

command list
;;
...
valuelistn)

command list
;;

esac

 Unix Crash Course Slide 47

Shell flow: case

● Valuelists consist of one or more patterns to
match against the string, separated by pipes
(|)

● Shell globbing syntax is allowed when
matching the string

● Only the first matching entry is executed

 Unix Crash Course Slide 48

Shell flow: while

● Repeat a block of commands as long as the
constraint is valid. Syntax:
while command
do

command list
done

or
until command
do

command list
done

● Exit or restart the loop with break or continue

 Unix Crash Course Slide 49

Shell flow: for

● Repeat a loop a number of times while
assigning a value to a variable. Syntax:
for VAR in value-list
do

command list
done

● The value-list consists of whitespace-separated
values.

● break and continue are valid in for loops.
● Bash allows a C-like syntax:
for ((expr1;expr2;expr3)) ; do list ; done

 Unix Crash Course Slide 50

test

● The test command is used very often for flow
control. The syntax is:
test expression or
[expression]

● Expressions can be tested for strings, numbers
or files.

 Unix Crash Course Slide 51

test examples

["$VAR" = foo] - Test string equality

[-z "$VAR"] - Test $VAR as empty string

["$VAR" -lt 12] - Numeric comparison

[-d foo] - Is foo a directory

[expression1 -a expression2] - Logical AND

[expression1 -o expression2] - Logical OR

[! expression] - Logical NOT

 Unix Crash Course Slide 52

Lab 4

(page 28)

Create a small script with multiple names.

Alter the behaviour depending on the name.

Remember: the name of the script is stored in
the variable $0

 Unix Crash Course Slide 53

Regular expressions

● Recognise the language of strings that can be
expressed with a state transition diagram

● Used extensively in Unix, e.g. ed, grep, vi, awk,
perl, python, etc.

 Unix Crash Course Slide 54

Regular expressions

● abc – Concatenated characters are recognized
as such

● . – The dot is a placeholder for any character
● * – The asterisk represents zero or more

repetitions of the previous character
● [abc0-9] – A single character in the brackets is

recognized, 0-9 is a range
● [^abc0-9] – A caret as first bracketed character

negates the list.

 Unix Crash Course Slide 55

Regular expressions

● ^ and $ bind to the empty string at the
beginning and end of a line respectively

● \< and \> bind to the empty string at the
beginning and end of a line respectively

● \| is the logical OR between two regexps
● \(and \) can be used to group part of a

regexp that can be referenced as \n, where n
is the number of the nth grouping.

 Unix Crash Course Slide 56

Extended regexps

● The ? recognizes zero or one repetitions of the
previous character or group

● The + recognizes one or more repetitions
● {n,m} recognizes at least n and at most m

repetitions. Either n or m is optional. A single n
recognizes exactly n repetitions.

● The characters (,) and | are not escaped in
extended regexps

 Unix Crash Course Slide 57

sed

● sed is a stream editor. It will change the text of
stdin or the file(s) in the arguments and send
the result to stdout.

● A sed command can be preceded by a range
definition. If the range is omitted, all lines are
submitted to the command.

● Lines that are unaffected by either the range or
the command are printed verbatim to stdout.

 Unix Crash Course Slide 58

sed

● The range takes the form of a,b where both a
and b can be either a line number or a regexp
indicating the first line where the regexp
matches.

● Example: the command
1,/^$/d

will delete all text from the first line to the first
empty line.

● Multiple commands are grouped in braces ({})
with each command on a separate line.

 Unix Crash Course Slide 59

sed

Some common sed commands:
● Substitute: s/regexp/newtext/flags
\n and & references are available in RHS

● Delete: /regexp/d
● Append: atext or insert itext.

A single range token is mandatory. Newlines
must be escaped with a backslash (\)

● Transliterate: y/fromchars/tochars/
Replace all occurences from LHS with
corresponding character from RHS

 Unix Crash Course Slide 60

awk

● All commands consist of an optional pattern
followed by a block of statements in braces:
pattern { statements }
pattern { statements }
...

● All lines that pass the pattern constraint are
subjected to the statements

● The BEGIN and END patterns indicate statements
that are executed before and after reading the
input respectively

 Unix Crash Course Slide 61

awk

Patterns can be:
● A regexp (/pattern/)
● A relational expression ($4 < 15)
● A boolean construct of patterns (&&, || and !)
● Alternate pattern evaluation (C syntax):
pattern ? pattern : pattern

● A range (pattern1,pattern2)
● Special pattern BEGIN or END

 Unix Crash Course Slide 62

awk

● The input line is divided in “fields” ($1, $2, etc)
separated by whitespace. $0 is the whole line.

● Variables can be string or numeric, or an array
of variables. Array indexes are associative and
placed in sqaure brackets ([]).

● Statements in a block are separated by
newlines or semicolons (;). A statement can be
an action statement (like print) or a flow
statement (if, for, do while, etc.) with
statement blocks of their own.

 Unix Crash Course Slide 63

awk

● Example: Fibonacci numbers

awk 'BEGIN { cnt=0
a=0; b=1
while (cnt < 10)
{ cnt++

c=a+b; a=b; b=c
print "Fib(" cnt ") is " c

}
}'

 Unix Crash Course Slide 64

Text editing

Editing text is a frequent task in Unix systems.

Some text editors are:
● vi (present on about every Unix system)
● emacs

● pico / nano
● ed (if all else fails)

Notice the difference in line endings between
Unix and other OS-es

 Unix Crash Course Slide 65

Programming

● Most Unix systems come with a C compiler
preinstalled.
The GNU project has development
environments for many other languages (C++,
Fortran, Java, Pascal etc.)

● Use make to automate compile and link tasks
● Many scripting languages are available, often

not by default (perl, PHP, Python, etc).

 Unix Crash Course Slide 66

Screen

If you have a long running job, start a shell
inside screen

● screen -r to reconnect a disconnected
session

● Ctrl+A D to disconnect
● Ctrl+A C to create a new shell
● Ctrl+A N or Ctrl+A P to cycle though shells
● Ctrl+A ? for help

 Unix Crash Course Slide 67

Mumbo Jumbo Revisited

 Unix Crash Course Slide 68

Mumbo Jumbo Corrected

find * -name "CV*" -group jewerkisjehobby \

| xargs egrep -il '(creatief|innovatief)' \

| xargs nawk '$1 == "email" { print $2 }' \

| while read addr ; do \

echo http://www.omroep.nl/gurus | Mail -s \

"Je baan is in Hilversum" $addr ; done

 Unix Crash Course Slide 69

Try it yourself

Download an Ubuntu DVD from:
https://www.ubuntu.com/download/desktop

Burn it to a USB stick with Rufus (https://rufus.ie/)

This is a live CD that you can try on a PC or Mac
without overwriting an existing OS

... and it's FREE! (both types)

 Unix Crash Course Slide 70

^D

Thank you for your interest.

This presentation will be available online at
https://unix.hamal.nl/

